Sit in easy pose or posture with a straight spine. Bring arms comfortably to the sides of the body with the elbows bent. Hands in fists with the thumb over the last three fingers, facing forward. Forefinger or Jupiter finger up straight. Hold the Jupiter finger very straight, tight and stable, without tensing the rest of the arms and body. The forearms should be perpendicular to the ground. During the meditation check the position and move the elbows forward as needed to maintain the position.
The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.
This incredible app which you  not only has over 3 hours of meditations valued at $200, the technology utilized is unlike anything else on the marketplace. The heartbeat synchronization augmentation gives you a completely immersive experiencing, tuning in to your body’s natural rhythms. It gives you the best binaural music on the market. Fully customizable, you can base your meditation on your mood, goals and timeframe. This is the perfect app for a deep, introspective experience.
"Wow! I have been doing this Awakening Kundalini guided meditation every morning for about two weeks now. I am a yoga teacher and I have never experienced energy like this before! Every morning, I feel a surge and abundance of endless vital energy nourish my mind, body, and soul. The sounds, theta waves and guidance are perfectly combined to gently awaken the sleeping serpent confirmed by the exquisite sensations experienced. "  --Katarine
A 2008 study at Hofstra University played two different binaural beats and a control sound (a babbling brook) to patients with high blood pressure. There was no difference between the groups. In one small study from Japan that was published in the Journal of Neurophysiology in 2006, they played various binaural beats to nine subjects, and observed the resulting EEGs. They found great variability in the results. Their conclusion was that listening to binaural beats can produce activity on the human cerebral cortex, however the cause was more likely a conscious auditory reaction and was not correlated to the frequency of the binaural beat. However, a 2005 study published in Clinical Neurophysiology found that they were able to induce a desired frequency in the EEG matching the phantom beat frequency encoded in a binaural beat, however this was with a single subject and was neither blinded nor controlled.

Similar results have been achieved with the use of music alone, the most famous example being the so-called Mozart effect. In his book "Pourqui Mozart?" Dr. Alfred A. Tomatis claims that the composer’s music promoted healing and brain development[1]. The idea has been further popularized by Don Campbell in his book "The Mozart Effect", which claims that listening to Mozart can temporarily boost a person’s scores on portions of an IQ test [2].


Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]
With these studies in mind, EquiSync's revolutionary, multi-layered, multi-tiered approach was born. Designed to synchronize and harmonize your brainwaves while allowing you access to the deepest, most pleasurable, most beneficial states of meditation — much faster than the traditional route, EquiSync® has made mastering meditation easier than ever!
Because the mind and body are a single system, changing our brainwaves and spending more time in harmonious, relaxed, and restorative mind-states also affects our physical health. Physical health then reinforces our mental-state, and a feedback loop of either positive or negative processes becomes established. Research studies have shown beneficial effects of using brainwave entrainment for treating migraine headaches, premenstrual syndrome, and for managing physical pain.
Beta waves range between 13-40 HZ You are wide-awake, alert. Your mind is sharp, focused. It makes connections quickly, easily, and you're primed to do work that requires your full attention. In the Beta state, neurons fire abundantly, in rapid succession, helping you achieve peak performance. New ideas and solutions to problems flash like lightning into your mind.
Information on this website is provided for informational purposes only and is not intended as a substitute for the advice provided by your physician or other healthcare professional. You should not use the information on this website for diagnosing or treating a health problem or disease, or prescribing any medication or other treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition.

Beta: These brainwaves are associated with high levels of alertness and arousal. When beta brainwave patterns dominate, we’re primed to focus and concentrate, to make decisions and think analytically. When you’re analyzing an issue at work, you’re probably in a beta-dominant state. Beta waves are fast, with a higher frequency (between 15-40 hertz). At the higher levels of this range, beta waves are associated with anxiety.
Have only used this for a couple of nights, but it does do the trick of staying or returning to sleep if you have it on repeat or in a longer playlist line up. I would recommend it. I would say that however, you need to try it for a least a week, as the initial getting used to it and not fighting the rhythm may occur - so at least give it a chance.
Binaural beats were discovered in 1839 by a German experimenter, H. W. Dove. The human ability to "hear" binaural beats appears to be the result of evolutionary adaptation. Many evolved species can detect binaural beats because of their brain structure. The frequencies at which binaural beats can be detected change depending upon the size of the species' cranium. In the human, binaural beats can be detected when carrier waves are below approximately 1000 Hz (Oster, 1973). Below 1000 Hz the wave length of the signal is longer than the diameter of the human skull. Thus, signals below 1000 Hz curve around the skull by diffraction. The same effect can be observed with radio wave propagation. Lower-frequency (longer wave length) radio waves (such as AM radio) travel around the earth over and in between mountains and structures. Higher-frequency (shorter wave length) radio waves (such as FM radio, TV, and microwaves) travel in a straight line and can't curve around the earth. Mountains and structures block these high-frequency signals. Because frequencies below 1000 Hz curve around the skull, incoming signals below 1000 Hz are heard by both ears. But due to the distance between the ears, the brain "hears" the inputs from the ears as out of phase with each other. As the sound wave passes around the skull, each ear gets a different portion of the wave. It is this waveform phase difference that allows for accurate location of sounds below 1000 Hz(9). Audio direction finding at higher frequencies is less accurate than it is for frequencies below 1000 Hz. At 8000 Hz the pinna (external ear) becomes effective as an aid to localization. In summary it's the ability of the brain to detect a waveform phase difference is what enables it to perceive binaural beats.

(Shannahoff-Khalsa, 1991; Webb & Dube, 1981). These naturally occurring shifts may underlie the anecdotal reports of fluctuations in the effectiveness of binaural beats. External factors are also thought to play roles in mediating the effects of binaural beats (Owens & Atwater, 1995). The perception of a binaural beat is, for example, said to be heightened by the addition of white noise to the carrier signal (Oster, 1973), so white noise is often used as background. "Music, relaxation exercises, guided imagery, and verbal suggestion have all been used to enhance the state-changing effects of the binaural beat" (Owens & Atwater, 1995). Other practices such as humming, toning, breathing exercises, autogenic training, and/or biofeedback can also be used to interrupt the homeostasis of resistant subjects (Tart, 1975).
Binaural beats were discovered in 1839 by a German experimenter, H. W. Dove. The human ability to "hear" binaural beats appears to be the result of evolutionary adaptation. Many evolved species can detect binaural beats because of their brain structure. The frequencies at which binaural beats can be detected change depending upon the size of the species' cranium. In the human, binaural beats can be detected when carrier waves are below approximately 1000 Hz (Oster, 1973). Below 1000 Hz the wave length of the signal is longer than the diameter of the human skull. Thus, signals below 1000 Hz curve around the skull by diffraction. The same effect can be observed with radio wave propagation. Lower-frequency (longer wave length) radio waves (such as AM radio) travel around the earth over and in between mountains and structures. Higher-frequency (shorter wave length) radio waves (such as FM radio, TV, and microwaves) travel in a straight line and can't curve around the earth. Mountains and structures block these high-frequency signals. Because frequencies below 1000 Hz curve around the skull, incoming signals below 1000 Hz are heard by both ears. But due to the distance between the ears, the brain "hears" the inputs from the ears as out of phase with each other. As the sound wave passes around the skull, each ear gets a different portion of the wave. It is this waveform phase difference that allows for accurate location of sounds below 1000 Hz(9). Audio direction finding at higher frequencies is less accurate than it is for frequencies below 1000 Hz. At 8000 Hz the pinna (external ear) becomes effective as an aid to localization. In summary it's the ability of the brain to detect a waveform phase difference is what enables it to perceive binaural beats.
One larger and more recent randomized and controlled trial looked at the use of binaural beats in 291 patients admitted to the emergency department at a hospital. The researchers observed significant decreases in anxiety levels in patients exposed to audio with embedded binaural beats compared to those who listened to audio without binaural beats or no audio at all (headphones only).
Research: the authors stated that qualitative electroencephalogram signatures needed to be developed for different disorders and tested using standard validated methods of psychological assessment. Larger RCTs were needed with clear inclusion criteria for participants. The RCTs should measure qualitative EEG, hormone levels and the time of day of the intervention. Interventions protocols should be clearly defined and the relationship between session frequency/ duration and outcomes should be explored. More studies of auditory stimulation were needed, as well as studies comparing different types of stimulation, monaural, binaural and isochronic beats and use of white noise versus music.
A word to the purist here. This binaural beat generator offers ten carrier frequencies, but humans only have two ears! Therefore, carriers on this generator will produce amplitude-modulated beating patterns inside each ear canal. This is not necessarily a bad thing, as it increases the perception of the overall beating pattern, and helps our brain catch up with the binaural beat. This explains why this generator produces stronger beats than any other available. If you are looking for a pure binaural beat generator instead - one without any intra-aural interference but a weaker stimulus - try our Harmonic Binaural Beat Generator; its carriers have been set to distant frequencies, in order to suppress any amplitude modulation between carriers.
×