Theta waves also have been observed in moments when a person recalls information from the past, and this may be what links them also to improvement in learning ability. We also experience theta waves when we go into automatic pilot mode, such as when doing a repetitive task like driving a familiar route where the mind become disconnected while you still drive safely toward your destination.

Similar results have been achieved with the use of music alone, the most famous example being the so-called Mozart effect. In his book "Pourqui Mozart?" Dr. Alfred A. Tomatis claims that the composer’s music promoted healing and brain development[1]. The idea has been further popularized by Don Campbell in his book "The Mozart Effect", which claims that listening to Mozart can temporarily boost a person’s scores on portions of an IQ test [2].
With regard to listening without headphones specifically, you might find it irritating if you are someone who suffers from motion sickness, depending on how the track is created. If you were listening to binaural beats, they really need headphones to work properly. If you are in a room and closer to one speaker you may not even hear binaural beats properly, and if sitting off centre in the room generally, that may have unsettled you if you have motion sickness as the tones try to form a beat in your head. If it was just a standard isochronic tones theta track that shouldn’t be irritating if you have motion sickness.
Theta: This brainwave pattern is associated with deep relaxation and with some stages of sleep, including the lighter stages of non-REM (NREM) sleep. REM sleep itself is mostly composed of beta wave and other activity that’s similar to an alert, waking brain. Deep meditation produces theta waves, which are slower and lower frequency (between 5-8 hertz) than Alpha waves. That murky barrier between sleep and wakefulness, when you’re drifting in and out of sleep, and your thoughts feel dreamlike and difficult to remember? That’s a theta-dominant state of consciousness.
The internal rhythm of the brain is called brainwaves and the brainwave pattern varies depending on what a person is doing – sleeping, relaxing, analyzing, etc. Brainwave entrainment is the response of the brain to stimulation with rhythmical sound, such as pulses or beats. After being stimulated with a certain frequency for a period of time, the brain reproduces the same frequency with its internal rhythm, thus achieving a targeted state.
Why is exposure to these soundwaves helpful to sleep and relaxation? Science shows that exposure to binaural beats can create changes in the brain’s degree of arousal. Listening to these sounds that create a low-frequency tone, research indicates, triggers a slow-down to brainwave activity—and that may help you relax, lower your anxiety, and can make it easier for you to fall asleep and sleep more soundly.
"Given the popularity and effectiveness of meditation as a means of alleviating stress and maintaining good health, there is a pressing need for a rigorous investigation of how it affects brain function," says Professor Jim Lagopoulos of Sydney University, Australia. Lagopoulos is the principal investigator of a joint study between his university and researchers from the Norwegian University of Science and Technology (NTNU) on changes in electrical brain activity during nondirective meditation.
Listening to Theta Meditation will guide your mind into relaxation that is so deep that most people are unable to stay awake. You won't go into deep sleep but stay in a place of not being asleep and not being awake either. Some people experience dreams. Others don't remember anything. Some people are able to have normal thoughts but after the meditation they seem as if the thoughts were part of a dream.

Your brain cells reset their sodium & potassium ratios when the brain is in Theta state. The sodium & potassium levels are involved in osmosis which is the chemical process that transports chemicals into and out of your brain cells. After an extended period in the Beta state the ratio between potassium and sodium is out of balance. This the main cause of what is known as "mental fatigue". A brief period in Theta (about 5 - 15min) can restore the ratio to normal resulting in mental refreshment.  
When we are mentally active various groups of neurons will be firing and the EEG will look like a jumble of different waves at different frequencies. When we are in a relaxed state, however, our brains settle into a steady rhythm – when fully awake this is the alpha rhythm, which as a frequency of 8-12 hz and other recognizable features. When drowsy our brainwaves slow to the theta range, 6-7hz, and when in deep sleep into the delta range, 4-5hz.

That all said, we are all different and have our own different limits. So I generally advise that you just be aware of how you are feeling, and if you feel like you are getting a bit fatigued from it, it’s probably time to stop or at least take a break. When listening over long extended periods, I recommend that you keep yourself well-hydrated. Your brain needs a good supply of water to function well, especially if you are studying hard and increasing your brainwave electrical activity.

In the average person, the activity of one brain hemisphere is dominant over the other, called brain lateralization. This hemispheric imbalance leads us to experience the world in a black and white way, perceiving separation over connectedness. When brainwave entrainment is used to synchronize brainwave activity in both hemispheres simultaneously, a person can more easily integrate information from all parts of the brain and solve problems with greater intelligence and sensitivity.


The aim of this study is to identify tendencies in the effectiveness of relaxing audio stimuli that could be verified through further focused experiments. A series of brainwave entrainment (BWE) techniques for inducing relaxation will be presented consisting of different binaural phenomena (BP). The BP will derive from the binaural sine wave beat, widely acknowledged in rhythmic BWE... [Show full abstract]
I first became aware of brainwave meditation programs  and brain waves when researching alternative methods for treating the bipolar disorder I had been unsuccessfully living with my entire adult life. I eventually learned a method of releasing difficult emotions on the spot, which I then practiced extensively, and consequently found it easier and even desirable to meditate for fairly lengthy periods of time. Though I took up meditation as a serious daily practice and experienced many undeniable benefits, I nonetheless intermittently experienced life-debilitating bouts of mania and severe depression, often resulting in chaotic mixed states and an inability to maintain daily social functions. During these times, it became nearly impossible to sit in meditation.
♥ ← This set of tones with the bird calls from Aotearoa is keeping me awake while I finish an essay I've been working on for the past four days. Focus beats + sounds I associate with morning = wakefulness. Still craving the bed, but at least I'm not falling asleep at my desk. Thanks myNoise, without you I'd probably be listening to music and distracted.
With brain wave entrainment technology, changing brain wave states is an instantaneous and effortless process. The 'periodic stimulus' can be sound, vibrations and/or light. We have found that we get the best results with blinking lights which are experienced through closed eyelids. This is only problematic for people with existing diagnosis of photo-induced epilepsy, as blinking lights can induce a seizure in them. The programs are enhanced with Deepak Chopra doing the narration along with holographic sound effects and original music composed and performed by Rudy Tanzi.
I have been using the Equisync CDs at least 24 minutes 5 days a week. It instantly relaxes me, helps get rid of headaches and even hiccups! I have a stressful job and it helps prevent anxiety; I have not had a chance to check my blood pressure but I feel calmer. I have used other products before but I like the Equisync CDs much better; it is deeper and more relaxing.
Earlier evidence out of UCLA suggested that meditating for years thickens the brain (in a good way) and strengthens the connections between brain cells. Now a further report by UCLA researchers suggests yet another benefit. Long-term meditators have larger amounts of gyrification ("folding" of the cortex, which may allow the brain to process information faster) than people who do not meditate. A direct correlation was found between the amount of gyrification and the number of meditation years, possibly providing further proof of the brain's neuroplasticity, or ability to adapt to environmental changes.
How does brainwave entrainment work? Consistent, precisely engineered audio frequencies in the form of binaural beats cause the brain’s frequencies to match the stimulus. Your brain perceives two beats with slightly different frequencies (which are inaudible to the ear) through your headphones. It takes the difference between the two, and matches its own frequency to it. This is called the “frequency following” response.
Study after study has shown that brainwave entrainment technology is an effective way to relieve anxiety[4], and that meditation alters brainwave patterns more effectively than regular relaxation [5]. Dr. Jeffrey D. Thompson refers to the “far-reaching possibilities” to be enjoyed by using “this type of vibrational technology” to encourage healing, emotional release, stress reduction, relaxation and, of course, deeper meditation [6].

For example, if a 530 Hz pure tone is presented to a subject's right ear, while a 520 Hz pure tone is presented to the subject's left ear, the listener will perceive the auditory illusion of a third tone, in addition to the two pure-tones presented to each ear. The third sound is called a binaural beat, and in this example would have a perceived pitch correlating to a frequency of 10 Hz, that being the difference between the 530 Hz and 520 Hz pure tones presented to each ear.
Delta brainwaves have the slowest frequencies, ranging between 0.1 and 4 hertz, and these are the brainwave states associated with deep sleep, trance states, and unconsciousness. Few people can remain awake during delta brainwaves states, although this state is recorded in awake infants between ages of three months and one year and also in babies just before birth. Delta waves are also linked with increased production of HGH, DHEA, and the neuro-transmitter serotonin.
Theta: This brainwave pattern is associated with deep relaxation and with some stages of sleep, including the lighter stages of non-REM (NREM) sleep. REM sleep itself is mostly composed of beta wave and other activity that’s similar to an alert, waking brain. Deep meditation produces theta waves, which are slower and lower frequency (between 5-8 hertz) than Alpha waves. That murky barrier between sleep and wakefulness, when you’re drifting in and out of sleep, and your thoughts feel dreamlike and difficult to remember? That’s a theta-dominant state of consciousness.
Controversies concerning the brain, mind, and consciousness have existed since the early Greek philosophers argued about the nature of the mind-body relationship, and none of these disputes has been resolved. Modern neurologists have located the mind in the brain and have said that consciousness is the result of electrochemical neurological activity. There are, however, growing observations to the contrary. There is no neuro-physiological research which conclusively shows that the higher levels of mind (intuition, insight, creativity, imagination, understanding, thought, reasoning, intent, decision, knowing, will, spirit, or soul) are located in brain tissue (Hunt, 1995). A resolution to the controversies surrounding the higher mind and consciousness and the mind-body problem in general may need to involve an epistemological shift to include extra-rational ways of knowing (de Quincey, 1994) and cannot be comprehended by neuro-chemical brain studies alone. We are in the midst of a revolution focusing on the study of consciousness (Owens, 1995). Penfield, an eminent contemporary neurophysiologist, found that the human mind continued to work in spite of the brain's reduced activity under anesthesia. Brain waves were nearly absent while the mind was just as active as in the waking state. The only difference was in the content of the conscious experience. Following Penfield's work, other researchers have reported awareness in comatose patients (Hunt, 1995) and there is a growing body of evidence which suggests that reduced cortical arousal while maintaining conscious awareness is possible (Fischer, 1971;West 1980; Delmonte, 1984; Goleman 1988; Jevning, Wallace, & Beidenbach, 1992; Wallace, 1986; Mavromatis, 1991). These states are variously referred to as meditative, trance, altered, hypnogogic, hypnotic, and twilight-learning states (Budzynski, 1986). Broadly defined, the various forms of altered states rest on the maintenance of conscious awareness in a physiologically reduced state of arousal marked by parasympathetic dominance (Mavromatis, 1991). Recent physiological studies of highly hypnotizable subjects and adept meditators indicate that maintaining awareness with reduced cortical arousal is indeed possible in selected individuals as a natural ability or as an acquired skill (Sabourin, Cutcomb, Crawford, & Pribram, 1993). More and more scientists are expressing doubts about the neurologists' brain-mind model because it fails to answer so many questions about our ordinary experiences, as well as evading our mystical and spiritual ones. The scientific evidence supporting the phenomenon of remote viewing alone is sufficient to show that mind-consciousness is not a local phenomenon (McMoneagle, 1993).  
Changes in neural oscillations, demonstrable through electroencephalogram (EEG) measurements, are precipitated by listening to music,[20][21][22][23][24][25] which can modulate autonomic arousal ergotropically and trophotropically, increasing and decreasing arousal respectively.[26] Musical auditory stimulation has also been demonstrated to improve immune function, facilitate relaxation, improve mood, and contribute to the alleviation of stress.[27][28][29][30][31][32][33] These findings have contributed to the development of neurologic music therapy, which uses music and song as an active and receptive intervention, to contribute to the treatment and management of disorders characterized by impairment to parts of the brain and central nervous system, including stroke, traumatic brain injury, Parkinson's disease, Huntington's disease, cerebral palsy, Alzheimer's disease, and autism.[34][35][36]

Cvetkovic D, Simpson D, Cosic I (2006). “Influence of sinusoidally modulated visual stimuli at extremely low frequency range on the human EEG activity“. Conference proceedings : … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 1: 1311 – 4. doi:10.1109
The same can be applied to the auditory senses, instead of the visual. Think of when you walk around the city with a friend or relative, have you ever noticed that your steps end up synchronized? Or when you walk with music which just happens to have a walkable tempo, before you know it you’re walking to the beat! This is how some insomniacs get treated. Binaural beats or brainwave entrainment aims to naturally help you synchronize yourself to a desired state of mind.
Theta also plays an important part in behavior modification programs and has been used in the treatment of drug and alcohol addiction. Because theta brainwave activity induces an "endorphin high" it can reduce the desire for mind altering substances. Also, because theta is associated with heightened receptivity, it is the ideal state to reprogram your mind with positive thoughts that assist in changing habits and behaviors.
Hi. This article contains a lot of information about brainwave entertainment. Thanks. I have a question. I downloaded an Android app that plays isochronic tones. I like to use an Isochronic tone at 2.5Hz that is in Delta range and is supposed to help me get a deep and dreamless sleep. I use it without headphones and just keep the smartphone next to my pillow. But I do not know if I should keep the tone playing all the time while I sleep or put it on timer to shut off after some specified time. A custom timer is possible with the app. Can you please guide me.
The internal rhythm of the brain is called brainwaves and the brainwave pattern varies depending on what a person is doing – sleeping, relaxing, analyzing, etc. Brainwave entrainment is the response of the brain to stimulation with rhythmical sound, such as pulses or beats. After being stimulated with a certain frequency for a period of time, the brain reproduces the same frequency with its internal rhythm, thus achieving a targeted state.

That all said, we are all different and have our own different limits. So I generally advise that you just be aware of how you are feeling, and if you feel like you are getting a bit fatigued from it, it’s probably time to stop or at least take a break. When listening over long extended periods, I recommend that you keep yourself well-hydrated. Your brain needs a good supply of water to function well, especially if you are studying hard and increasing your brainwave electrical activity.
♥ Imagine a really bad ringing in your ear and the pain that it brought along or when your ear was throbbing with pain. Can you remember the sound coming from that ear? Probably not, since the pain was probably far more memorable. This sounds very similar to that, but it is not at all painful. Quite a unique experience, really. Try it out, but you need to be wearing earphones and have the volume up.
×